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Abstract

The Helmholtz equation can be reshaped into a form analogous to the
Schrödinger equation with the term labeled ‘the optical potential’. By following
this analogy, we conclude that there exist certain profiles of optical potentials
which possess bound states of electric field in the continuous part of the
spectrum. One of the methods for generating these specific optical potentials is
the application of supersymmetric formalism which transforms a real (initial)
potential into a family of complex potentials, which all have one bound state
in the continuum. We present general steps of this procedure and illustrate
its use through the example of flat initial optical potential. In this particular
case, conditions are found for the existence of the bound field in continuum,
as well as the expression for the field and the corresponding complex optical
potential in an analytic form. In addition, the approximation of digital grading
is applied to the generated complex supersymmetric optical potential and the
‘bound’ state is calculated. The complex nature and the sharp variations of the
supersymmetric optical potential impose the development of an original and
sophisticated method of digital grading.

PACS numbers: 11.30.Pb, 03.65.Ge, 42.25.Bs

1. Introduction

Von Neumann and Wigner [1] were the first to find that the Schrödinger equation may
have regular solutions which represent bound states in the continuous part of the spectrum.
They have modulated the wavefunction in order to make it normalizable, and then used the
modulating function to extract the potential which supports such states. Herrick and Stillinger
[2–4] have shown that bound states in continuum may exist in atoms and molecules, and also
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pointed to the possibility of an electron in the electric field becoming localized by addition
of a suitable potential. Starting from a separable form of the Hamiltonian, Robnik has also
derived normalizable wavefunctions [5]. While the existence of normalizable eigensolutions
for non-local potentials is rather well explored [6], a systematic approach for local potentials
is still missing. Various techniques have been employed for the wavefunction modulation [7].
In [8], the authors give an experimental demonstration of resonant states in continuum which
are fairly similar in nature to bound states in continuum.

The physical phenomenon of bound states in continuum appears only for particular
potential profiles, either in the quantum mechanical or optical case. In addition to above
techniques for generating these specific potentials which support discrete states in continuous
part of the spectrum, supersymmetric quantum mechanics (SUSYQM) represents a very
efficient method which has primarily been used in quantum mechanical problems, and less
often in optical problems. However, applying SUSYQM to a potential that is real leads to
bound states only on the half-line x ∈ (0, ∞) [9–11], but not the full line. In order to remove
this constraint and generate bound states on the full line, complex potentials are introduced
[12, 13]. This, on the other hand, leads to a specific problem with the practical realization of
these generated complex potentials.

There is, indeed, a close analogy between quantum mechanical and electromagnetic
phenomena. In [14], the existence of bound states in radiation continuum is illustrated in
the example of two parallel gratings and two arrays of thin parallel cylinders, while [15, 16]
show that photonic crystals with defects may have localized states in the continuous part of
the spectrum.

In this paper, we start from the modified form of the Helmholtz equation for the electric
field, which is analogous to the Schrödinger equation (and so are their general solutions), in
order to construct complex optical potentials isospectral with the selected initial one. Each of
the complex optical potentials supports one and only one localized normalizable function of
the electric field in the continuum part of the spectrum. We first give a brief description of the
SUSY procedure, details of which can be found in [12, 13], applied to a quantum mechanical
problem, and then implement it to the case of a flat optical potential. Finally, we present
the somewhat non-standard digital grading approximation of the generated complex potential
and numerical solution for the electrical field function corresponding to it, with satisfactory
similarity to the original solution.

2. Theoretical considerations

Consider a material that is linear and non-homogeneous in the x-direction, described by the
following equations:

−→
D = ε(x)ε0

−→
E

−→
B = μ(x)μ0

−→
H.

(1)

In addition, two practical restrictions are imposed: (1) the EM waves are propagating along
the z-direction and (2) only the TE modes are considered, i.e.

−→
E = E−→ey .

The propagation of monochromatic waves with frequency ω0 is governed by the scalar
wave equation which for the case of the TE modes may be written for the y component of the
electric field:

−∂2E(x, z)

∂z2
− ∂2E(x, z)

∂x2
+

1

μ

dμ

dx

∂E(x, z)

∂x
− ε(x)μ(x)

c2
ω2

0E(x, z) = 0. (2)
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This equation is solved by separation of variables, i.e. by taking E(x, z) = E(x)E(z) and
subsequently inserting

E(x) =
√

μ(x)u(x), (3)

into the Helmholtz equation, which thus becomes

−d2u(x)

dx2
+

[
−k2

0ε(x)μ(x) − 1

2μ

d2μ(x)

dx2
+

3

4

1

μ2(x)

(
dμ(x)

dx

)2
]

u(x) = −β2u(x). (4)

where k0 = ω0/c and β is the propagation constant. Furthermore, it is convenient to introduce
a new function called ‘the optical potential’, which is defined as

�(x) = −k2
0ε(x)μ(x) − 1

2μ

d2μ(x)

dx2
+

3

4

1

μ2(x)

(
dμ(x)

dx

)2

. (5)

In this manner equation (4) becomes analogous to the Schrödinger equation − h̄2

2m

d2ψ(x)

dx2 +
U(x)ψ(x) = Eψ(x), and takes the form

− d2u(x)

dx2
+ �(x)u(x) = νu(x) (6)

where ν = −β2. It can easily be shown that the functions 1
μ(x)

dE(x)

dx
and E(x) are continuous

if ε(x) and μ(x) have only finite discontinuities. Hence, the quantities
√

μ(x)u(x) and
1√
μ(x)

du(x)

dx
+ u(x)

2μ3/2(x)

dμ

dx
must also be continuous. The last equation may be rewritten in the

operator form as

N̂u = νu (7a)

N̂ = − d2

dx2
+ �̂. (7b)

The operator N̂ is a Hermitian operator and can be written as

N̂ = Â2Â1 + ν (8)

where ν is an arbitrary eigenvalue of the operator N̂, and the operators Â1 and Â2 are defined
as

Â1 = d

dx
+ Ŵ (9a)

Â2 = − d

dx
+ Ŵ . (9b)

Here the term Ŵ denotes the ‘optical superpotential’:

Ŵ (x) = − 1

uv(x)

duv(x)

dx
. (10)

In this equation,

uv(x) = uv(x)

[
1 + C

∫
(x)

dx

u2
v(x)

]
(11)

is a general solution of the starting eigenproblem for the eigenvalue ν. The presence of the
constant C is an indication of degeneracy of any solution of (4). In standard methods of
solving of equation (4) it is usually assumed that the fields are finite and square integrable
so in some cases the values of C become fixed. In the SUSY procedure applied here, the

3
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nature of (11) is not significant because it is just an intermediate result which will be used for
construction of some other solution of another optical potential with desired properties. Thus,
it is not necessary to impose any restrictions on the complex constant C at this stage. The
central property that is required of the end solution is its square integrability and localization
in space, in spite of the fact that the corresponding eigenvalue belongs to the continuous part
of the spectrum. Hence, the appropriate limitations to the values of C will be enforced once
the final electric field function is obtained.

By following the conventional SUSY procedure we next consider the operator

N̂2 = Â1Â2 + ν = − d2

dx2
+ �̂2. (12)

As the constant C is a complex number here, so is the potential �̂2, and the new operator is
thus non-Hermitian. Yet, it is isospectral to the initial Hamiltonian, with the exception of ν

which is not its eigenvalue. We continue in an analogous manner, by constructing the operator
N̂3:

N̂3 = Â2Â1 + ν = − d2

dx2
+ �̂3, (13)

which is defined via the new optical superpotential:

W(x) = − 1

uv2(x)

duv2(x)

dx
. (14)

Here uv2(x) represents a general eigenvector of the operator N̂2:

uv2(x) = 1

uv(x)

[
ρ +

∫
(x)

u2
v(x)dx

]
(15)

corresponding to the eigenvalue v, where ρ is an arbitrary constant. The operators Â1 and Â2

have the same form as Â1 and Â2, but with the new superpotential W(x) instead of W(x). The
optical potential �̂3 is given by

�̂SS(x) = �̂3(x) = �̂(x) − 2
d2

dx2
[ln(ρ + I (x))] (16)

where

I (x) =
∫

(x)

u2
v(x) dx. (17)

The eigenfunction of the operator N̂3 for the eigenvalue ν is given by

uv3(x) = Cv3
uv(x)

ρ + I (x)
(18)

and for any other eigenvalue νn the corresponding expression reads

u3n = C3n

⎛⎝(νn − ν)un(x) +
uv(x)

[
uv(x) dun(x)

dx
− un

duv(x)

dx

]
ρ + I (x)

⎞⎠ . (19)

Equation (18) can actually be included in this last formula by considering the limit νn → ν.
The term (νn − ν)un(x)would thus vanish, while the limit of the second term in parentheses
can be calculated as (see the appendix for details)

uv(x)
[
uv(x) dun(x)

dx
− un

duv(x)

dx

]
ρ + I (x)

−→ uv(x)

ρ + I (x)
. (20)

4



J. Phys. A: Math. Theor. 42 (2009) 415304 N Prodanović et al

All the eigenfunctions within the discrete part of the spectrum of N̂ are localized in space,
in contrast to any of those belonging to the continuum part of the spectrum. The situation
is somewhat different for the operator N̂3 because it may have a localized normalizable
eigenvector even for an eigenvalue from the continuum of N̂ . This will be illustrated
through specific examples. Clearly, the values which are not the eigenvalues of N̂ are not the
eigenvalues of N̂3, either [4].

In this work we consider the following conditions which may have practical relevance:
the initial optical potentials are taken to be purely real and variable within a given interval
(xmin,xmax) but flat (having a constant value C1) outside of this interval. As a result, within the
SUSY treatment we have

uv(x → ±∞) → C2 cos(kx) + sin(kx), (21a)

I (x → ±∞) → x

2

[
C2

2 + 1
]
, (21b)

uv3(x → ±∞) = C2 cos(kx) + sin(kx)

ρ + x
2

[
C2

2 + 1
] , (21c)

�3(x → ±∞) = C1. (21d)

The last expression indicates that the outer (‘flat’) segments of the final structure �3(x) consist
of the same material selected for the construction of the initial profile �(x). If the parameters
C and ρ are chosen so that the function ρ +I (x) has no zeros on the whole domain, then uv3(x)

can be normalized. This will result in certain restrictions imposed on the values of C and
ρ. On the other hand, all the other eigenfunctions from the continuous part of the spectrum
are not localized (except in the limit νn → ν), so the final supersymmetric optical potential
supports only one bound state in continuum.

In the case of supersymmetric transformation via the (initially) bound state (which is not
of interest here), if the parameters C and ρ are both real, the final field can be normalized only
for C = 0. This is the standard SUSY procedure which results in a real optical potential �3(x).
By observing equation (21c) we deduce that, if the constant C = Cr + iCi is real (Ci = 0 and
Cr nonzero), then for any value of ρ one can find a coordinate x at which the denominator
ρ + I (x) becomes equal to zero; hence the field function becomes non-normalizable. If C is
truly complex and ρ is real, the requirement for the normalizability of the field will determine
the acceptable values of these parameters, as will be exemplified below. We will limit our
considerations to ρ ∈ R, without any loss of generality, as the case of complex ρ can be
analyzed in an analogous manner.

It can also be noted (within our model where the initial potential is real) that the reflection
and transmission coefficients remain the same after employing the SUSY formalism. This
is due to the fact that all the states wavefunction corresponding to eigenvalues νn �= ν have
the asymptotic form for x → ±∞ which is the same as the form of the wavefunction of
the initial potential (for x → ±∞). The state corresponding to the eigenvalue ν, as already
demonstrated, has one discrete solution (bound state in continuum) and one non-integrable
solution which diverges as x → ±∞. Therefore, it makes no sense to discuss the transmission
and reflection for the state with the eigenvalue ν of the final potential. Finally, if the initial
potential is real, the absorption is clearly equal to zero; consequently, the absorption in all the
complex final potentials remains zero, which can be expressed by the following equation:∫ ∞

−∞
Im(�ss(x))|uv(x)|2 dx = 0. (22)

At the end of this section, some comments need to be made about the normalization of
the function Ey(x). Contrary to the analogous quantum-mechanical problem, in the optical
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domain there is no unique solution. One approach to normalization of Ey(x) is by using the

time-averaged incident power Pin = γ0ε0c
2S

2ω
|E0|2, where Ein = E0 eiγ0x , S is the cross-section

surface and c is the speed of light in vacuum. If Pin is known in advance, assuming that
it remains unchanged in the supersymmetric procedure, it is possible to determine E0 and
thus perform the normalization. This is achievable only for continuous states. In the case
of discrete states (such as the bound state in continuum), the normalization may be carried
out using the method described in [17, 18]. Although it is evident from the above discussion
that the normalization of Ey(x) is not unambiguous, it has no considerable importance to the
problems considered in this paper.

2.1. Construction of the supersymmetric optical potential via a flat initial optical potential

We examine the case of an optically homogeneous medium characterized by the electric and
magnetic permeability ε, and μ, respectively. The selection of the initial potential is made
based on its simplicity—the flat potential is clearly the simplest possible choice. Thus, all
the terms containing derivatives of μ(x) in equation (4) vanish, and the product ε(x)μ(x) is
constant. Certainly, there are many other options for the initial potential, but these would lead
to quite complex (if at all obtainable in an analytic form) expressions for u(x), without adding
noticeably to the quality of the example. The general solution of (4) is then given by

uk(x) = sin(kx) + C cos(kx) (23)

where

k =
√

k2
0εμ − β2. (24)

Clearly, the spectrum of the flat potential is completely continuous for β2 < k2
0εμ. The aim is

to employ the SUSY approach to find the complex potential that accommodates a bound state
at the given eigenvalue. The final function can be express as

uss(x) ∼= C cos(kx) + sin(kx)

ρ + x
2 − sin(2kx)

4k
− C cos2(kx)

k
+ C2

[
x
2 + sin(2kx)

4k

] (25a)

while the superymmetric electric field reads

Ess(x) = √
μuss(x). (25b)

The corresponding supersymmetric optical potential is given by

�ss(x) = −k2
0εμ − 2

d2

dx2

[
ln

[
ρ +

x

2
− sin(2kx)

4k
− C cos2(kx)

k
+ C2

(
x

2
+

sin(2kx)

4k

)]]
.

(26)

It is evident that the fulfillment of the normalizability conditions for the electric field depends
on the denominator of equation (25), which may be separated into real and imaginary parts as

Re(ρ + I (x)) = ρ +
x

2
− sin(2kx)

4k
− Cr cos2(kx)

k
+

(
C2

r − C2
i

) [
x

2
+

sin(2kx)

4k

]
(27a)

Im(ρ + I (x)) = −Ci cos2(kx)

k
+ 2CiCr

[
x

2
+

sin(2kx)

4k

]
. (27b)

If Ci = 0, then Im(ρ + I (x)) = 0 for every x, and Re(ρ + I (x)) has at least one singularity
for any ρ. Further, if Ci �= 0, the equation 0 = − cos2(kx0)

k
+ 2Cr

[
x
2 + sin(2kx0)

4k

]
can be solved

6
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Figure 1. (a) An example of the supersymmetric localized electric field; (b) the corresponding
supersymmetric optical potential, for C = 3 + 3i, ρ = 6 mm, k = 3 mm−1, k2

0εμ = 500 mm−2.

for x0 which cancels out the imaginary part of the system (27), leading to the condition
−ρ �= x0

2 − sin(2kx0)

4k
− Cr cos2(kx0)

k
+

(
C2

r − C2
i

)[
x0
2 + sin(2kx0)

4k

]
for the real part.

The function Ess(x) will be square integrable if the coefficient in front of x in the
system (27) is non-zero, which will be true if [12, 13](

CiCr �= 0 and/or C2
r − C2

i + 1 �= 0
)
.

After defining the acceptable values for C and ρ, it is straightforward to obtain the family
of supersymmetric optical potentials �ss(x, ρ, C) with corresponding bound supersymmetric
electric fields Ess(x, ρ, C) at the eigenvalue ν. One particular case is shown in figure 1.

As expected from equation (21), the limit of the average value of the complex function
�ss(x → ∞) amounts to k2

0εμ = 500 mm−2.

7
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Numerical results indicate that for lower values of the parameter C and higher values of
the parameter ρ, the optical potential and the electric field have lower surges, while these
become stronger with the increase of C and the decrease of ρ.

The ultimate goal is to enable practical realization, i.e. to construct a photonic crystal with
permittivity εSS(x) and permeability μSS(x) which supports such a bound state in continuum.
Obviously, the most direct approach is to devise a material with εSS(x) and εSS(x) so that the
resultant optical potential emulates the supersymmetric optical potential obtained previously.
There are an infinite number of solutions to this problem. For example, one can apply
the digital grading approximation directly to the supersymmetric optical potential and then
compose very accurately the obtained digitally graded function.

Nevertheless, if we assume μss(x) = const = μss, then according to relation (5) we find

εss(x) = − λ2
0

4π2μss
�ss(x). (28)

We have decided on a nonmagnetic material (μSS = 1) for the following reason: in practical
realizations, it is much easier to find a set of materials with prescribed real and imaginary
parts of the dielectric permittivity, than a set of materials with both the required permittivity
and magnetic permeability at given frequency. Regarding the theoretical design of a photonic
crystal with the bound state in continuum, it is not significantly more complicated to consider
materials with different magnetic permeabilities, as well.

The last expression describes the complex relative permittivity εss(x), which will be
referred to as supersymmetric relative permittivity, proportional to the supersymmetric optical
potential. Apparently, photonic crystal with the relative permittivity ε(x) = εss(x) and the
relative permeability μss = 1 would provide �(x) = �ss, together with the projected bound
state in continuum. Thus, the problem is reduced to constructing the suitable photonic crystal
with ε(x) = εss(x). The approximate solution to this problem may be found by realizing
the calculated supersymmetric relative permittivity via digital grading. The advantage of this
method is that it produces a complex relative permittivity function which is constant by parts
and can therefore be realized by deposition of the layers of homogeneous materials.

2.2. The formalism of digital grading applied to complex supersymmetric relative permittivity

As explained in the previous section, it is necessary to process the complex supersymmetric
relative permittivity by digital grading in order to obtain segments of the structure with
homogeneous composition. The digital grading approximation of a complex function is
somewhat uncommon; therefore, it will be explained here in detail, assuming that the reader
is familiar with the standard digital grading approximation of real functions.

The first step is to define the segment of the structure that will undergo digital grading.
Here we select a domain symmetric around zero, as both the real and the imaginary parts of
the final function are almost symmetric or anti-symmetric. The area selected for digitalization
should not be too wide, in order to ensure the quality of the approximation. The peripheral
parts of the function are ‘flattened’ by taking the average values within particular areas. As
shown in equation (21), the value of the initial (constant) relative permittivity may be taken as a
satisfactory estimate of that flat outer part of the supersymmetric permittivity. Such averaging
of the peripheral area implies that the corresponding field will not be exactly bound, but it will
oscillate with sufficiently small amplitude and frequency.

The second step involves the application of digital grading formalism to both the real and
the imaginary part of the relative permittivity in the previously defined central area, in the
usual manner, as presented in [19–21], with a few modifications.

8



J. Phys. A: Math. Theor. 42 (2009) 415304 N Prodanović et al

The conventional digital grading formalism approximates the potentials with only two
values (e.g. the maximum and the minimum of the potential) across the whole domain, with
the strict layout of those two values. In the procedure applied here, three values are used.
This improves the accuracy of the approximation, but complicates the construction of the
obtained structure by increasing the number of constituent materials. Supersymmetric relative
permittivity is a strongly oscillating function around some average value that is almost equal to
the value in bulk or outside of the digitally graded area, so grading with only two values gives
poor results and cannot be utilized. Hence, an additional (medium) value is introduced as the
average value of the function outside of the digitally graded area, namely as in the ‘flattened’
area. The higher and the lower value are defined as in [19–21], as the extrema of the function
over the entire domain.

As described in [19–21], the complete domain is divided into intervals which are then
individually approximated with two different value combinations: the medium and the high
value or the medium and the low value. Those intervals will be from now on referred to as
the common cells. Thus, the common cell represents a standard interval where the graded
approximate function (both the real and the imaginary part) has only two values. The calculated
average of εss(x) determines the pair of values which is selected for each common cell. In
more detail, the medium and the high value are used to describe a particular cell if the average
value of εss(x) within it is greater than the medium value, while the medium and the low value
combination is used in the opposite case.

However, the smallest homogenous units intended for depositions are not the segments
occupied by individual values in each common cell, but the subcells which will be introduced
later.

The width filled with each value within a particular cell depends on the magnitude of the
integral

S =
∫

Cell
|εss(x) − εmed| dx, (29)

where εmed represents one of the two values appearing in a particular cell used as a reference.
In this work, by definition, it is always assumed that εmed corresponds to the medium value as
it is the only value present in each cell. The width of a non-medium value whigh/low, which is
either high or low for a specific cell, is defined by the relation

whigh/low= S

|εmed − εhigh/low| . (30)

The width occupied by the medium value is thus

wmed = d − whigh/low, (31)

where d represents the width of the cells.
Finally, in the third step previously obtained real and imaginary digitally graded functions

are used to compose the complex digitally graded structure. The complex values are
introduced as combinations of real and imaginary values. By combining three real and three
imaginary values, nine different complex values are obtained. If the two-value digital grading
approximation were used, then such combination would provide 2 × 2 complex values.

This procedure entails the division of each common cell into subcells so that exactly one
complex value can be assigned to each subcell, as shown in figure 2.

The whole structure can thus be constructed in practice by the deposition of the layers of
different materials corresponding to each subcell. This implies that each subcell consists of
one specific layer of suitable material chosen from the set of nine different materials if three-
value digital grading is considered, and from the set of four materials if conventional two-value

9
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Common Cells for Real and Imaginary Parts Layers
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Figure 2. Realization of the complex digitally graded function εssdg. Within one common cell
interval of the digitally graded real and imaginary part, three subcells–subintervals are marked by
dashed lines. The first subcell is characterized by a combination of the low value real part and low
value imaginary part. The second subcell is characterized by a combination of the low value real
part and medium value imaginary part. The third subcell is characterized by a combination of the
medium value real part and the medium value imaginary part.

digital grading is in use. Because all the cells are shared by the real and the imaginary part of
the function (i.e. they characterize both parts at the same time), and each of the cells comprises
only two values of the real or the imaginary part, it is evident that the three subcells in each
cell are sufficient to obtain the satisfactory complex digitally graded function.

3. Numerical examples and discussion

Depending on the selection of values of ν, ε, λ0 and μ for the flat optical potential, various
supersymmetric optical potentials are obtained. One can take for example k = 3 mm−1,
ε = 5, μ = 1, λ0 ≈ 630 μm, where k0 = ω0/c = 2π/λ0 denotes the wavenumber
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Im{E(x)} in Digitally Graded Material
Im{E(x)} in Smoothly Graded Material

Re{E(x)} in Digitally Graded Material
Re{E(x)} in Smoothly Graded Material

Figure 3. Comparison of the electric fields in the initial (smoothly graded) optical potential and
the digitally graded optical potential. The initial conditions are the same within the central parts
of the structures, so the differences between the approximated and the ‘accurate’ electric field
functions are very small therein. The biggest difference appears at the end of the domain, which
is here enlarged for clarity.

outside of the digitally graded area (in the homogenous part, which can be considered in
the limit x → ±∞), with the relative permittivity εss = ε and the permeability μss = μ as
�ss(x → ±∞) = −k2

0εμ. The wavenumber k defines the eigenvalue ν for which the SUSY
formalism is employed. The remaining parameters are then calculated as k0 = 10 mm−1,
ν = −β2 = k2 − k2

0εμ = −491 mm−2. In addition, C and ρ are defined so that the
supersymmetric eigenfunction is normalizable:

C = 3 + 3i, ρ = 9 mm. (32)

In the numerical example treated here, three real and three imaginary values of relative
permittivity are calculated:

Re(εhigh) = 5.1513, Re(εmed) = 5, Re(εlow) = 4.9318,

Im(εhigh) = 0.158 71, Im(εmed) = 0, Im(εlow) = −0.155 65.
(33)

The combinations of these values yield nine different homogenous materials whose relative
permittivity values are

εssdg1 = 5.1513 + i · 0.158 71, εssdg2 = 5.1513, εssdg3 = 5.1513 − i · 0.155 65,

εssdg4 = 5 + i · 0.158 71, εssdg5 = 5, εssdg6 = 5 − i · 0.155 65,

εssdg7 = 4.9318 + i · 0.158 71, εssdg8 = 4.9318, εssdg9 = 4.9318 − i · 0.155 65.

(34)

This combination of parameters is not exclusive. The set of parameters given by equation (34)
is just an illustration, and this example is generated so that the values of the real and imaginary
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-10 -5 0 5 10
-0.2

-0.1

0

0.1

0.2

x [mm]

Im
{ε

ss
(x

)}

-10 -5 0 5 10
-0.2

-0.1

0

0.1

0.2

x [mm]

Im
{ε

ss
dg

(x
)}

(b)

-10 -5 0 5 10

4.9

5

5.1

5.2

x [mm]

R
e

{ε
ss

(x
)}

-10 -5 0 5 10

4.9

5

5.1

5.2

x [mm]

R
e

{ε
ss

dg
(x

)}

(a)

Figure 4. The results of the digital grading approximation with three values for both (a) the real
and (b) the imaginary part.

parts of dielectric permittivities are within realizable limits, the condition that can obviously
be satisfied by other parameter combinations. As already pointed out, some materials must
have the negative imaginary part of the dielectric permittivity, which categorizes them as
active dielectrics—materials which are nowadays extensively studied and their realization
and characterization are well documented [22–24]. In our opinion, there is an additional
approach to the realization of materials described by equation (34). It relies on (electrically or
optically driven) quantum systems such as the quantum cascade laser, quantum amplifier or
multiple quantum wells (dots), which exhibit different values of dielectric permittivity from
the background permittivity [23, 24]. The sign and magnitude of the real and imaginary parts
of this resultant permittivity depend on the design of the quantum structure in question (e.g.
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Figure 5. Magnified section of the digitally graded supersymmetric relative permittivity (the real
and imaginary part). Two arbitrarily chosen common cells with their subcells are marked by the
dotted lines: the first subcell of the left selected cell is described by the material with the high
imaginary and low real value, namely εssdg7 = 4.9318 + i · 0.158 71; the second subcell of the
left selected cell is represented by the material with the high imaginary and medium real value,
i.e. εssdg4 = 5 + i · 0.158 71; the third subcell of the left selected cell corresponds to the material
with εssdg5 = 5. The first subcell of the right selected cell corresponds to the material with the
high imaginary and high real value, that is εssdg1 = 5.1513 + i · 0.158 71; the second subcell of the
right selected cell is described byεssdg4 = 5 + i · 0.158 71; and finally, the third subcell of the right
selected cell is described by εssdg5 = 5.

on widths of the well and the barrier layers, and on the material composition). For instance,
materials with indices 3, 6 and 9 from equation (34) may be created so as to have predefined
dielectric constants at a given frequency by varying e.g. only the layer widths, within relatively
narrow limits, since these permittivities are quite similar. Apparently, the same applies for the
group of materials with indices 1, 4, and 7, as well as 2, 5 and 8.

Depending on the wavelength of the electromagnetic mode, the dimension of the whole
structure in the x-direction can be varied. The minimal thickness of an individual layer within
the generated structure is limited by the numerical step used in calculations, which is here set
to d = 1 μm. The obtained results are presented in figures 3–5.

4. Conclusion

The SUSY method was used to generate the complex optical potential with a localized electric
field state in the continuum part of the spectrum. The bound state eigenvalue can be chosen
arbitrarily from the continuous spectrum of an initial operator N̂1. The non-Hermitian operator
N̂3, with a complex potential, is then generated as almost isospectral to N̂1, with an exception
of one additional localized state with normalizable eigenfunction. The parameters of the
complex optical potential have to be chosen so as to satisfy the condition of normalizability

13



J. Phys. A: Math. Theor. 42 (2009) 415304 N Prodanović et al

for this electric field function. The obtained smooth structural profile is then processed by the
digital grading technique, adapted to the case of a strongly oscillating complex function of the
real argument. Thus, the values of the complex relative permittivity are approximated so that
the structure may be realized by compiling the layers of homogeneous materials.
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Appendix

The new Wronskian function is defined as

W(x) = uv(x)
dun(x)

dx
− un(x)

duv(x)

dx
(A.1)

where uv(x) consists of two linearly independent parts:

uv(x) = uv(x)

[
1 + C

∫
(x)

dx

u2
v(x)

]
= uv(x) + Cuv(x)

∫
(x)

dx

u2
v(x)

= uv(x) + Cũν(x). (A.2)

Thus we obtain

W(x) = uv(x)
dun(x)

dx
− un(x)

duv(x)

dx
+ C

[
ũν(x)

dun(x)

dx
− un(x)

dũν(x)

dx

]
. (A.3)

Further, the function un(x) also comprises two linearly independent parts:

un(x) = un1(x) + un2(x) (A.4)

where limvn→ν un1(x) = uv(x) and limvn→ν un2(x) = ũν(x). Therefore, in the case of νn → ν

and un(x) = un1(x), equation (A.3) amounts to

W(x) = C

[
ũν(x)

duν(x)

dx
− uν(x)

dũν(x)

dx

]
= const q.e.d. (A.5)

while in the other case un(x) = un2(x), it reads

W(x) = uv(x)
dũν(x)

dx
− ũν(x)

du(x)

dx
= const q.e.d. (A.6)

The conclusion is that all the eigenfunctions for νn �= ν which are double-degenerate become
merged into one eigenfunction uν(x) in the limit νn → ν.
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